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Conditional of a jump occurring, the limiting distribution for

the size of the jump in the partial maxima sequence for a class of sta-

tionary Gaussian sequences is derived. It is shown that the limiting dis-

tribution is exponential with mean 4-T where y equals the atom at zero of

the spectral distribution function associated with the correlation function

)f the sequence. A generalization of this result to include the entire

jump sequence subsequent to the jump conditioned to occur is also presentcd.

rhis research was done in part while the author was at the center

for Stochastic Processes at Chapel lill. The author wants to express his

gratitude to Chapel Hill for the financial assistance and hospitality shown

to him.
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1. IN[ ROLDUCTI ON

Let {Xk, k>o) be a stationary sequence of standard normal

random variables with correlation function r. In the main result of

this paper ke will require the correlation function to satisfy the

condition that there exists some o < a < i such that

I

(1.1) sup I r k -r J = 0 (1n-)
i nct < k <nnnn

and that r is not identically one.

Condition (1.1) is of course not a mixing condition. In

fact it follows from (1.1) that r + y as n where y is the atom

at zero of the spectral distribution function associated with r, (2.6) of

[3]. Note o < y < 1 since r is assumed to be not identically 1 and so by

stationarity sup IrnI < 1.
n

Furthermore we have the simple but useful representation of

the first n + I terms of the sequence given by

(1.2) Xk cn(k) Y Xn o < k < n

X n

Ik nk an -- (k2w- X - 2 Xn)
where k (k) n n + 1 k~o Xk and (X

n

Under condition (1.1) it follows [31 that p n(i,j) = E Y. nyn satisfiesfl 1 J

ma x I p n(i,i) r(i-j) - r(n) I = (1_ n)

o < i < j < n I - r(n)

Thus we see that condition (1.1) imposes a mixing condition

on the Ykn variables and that Xn referred to as a binding variable is

responsible for any strong dependence in the original sequence. Gaussian

processes with this type of structure have been considered in a number of



papers e.g. [3), [5] and it is the presence of such a binding variable

which effects departures from the usual asymptotic results in the strongly

dependent case.

The problem under consideration in this paper is that of

jumps in the partial maxima sequence. Denoting M = max Xk and0 < k < k
n

* m'n max Yk we see that a j,"imp occurs at time m = n in the

M sequence if and only if a jump occurs at time m = n in the M*

sequence. Consequently the binding variable does not affect the occur-

rence of jumps and we expect that under (1.1) the limiting behavior for

the jumps in the dependent case should agree with the corresponding

result for independent variables. That this is indeed the case is

demonstrated in section 2.

2. CONDITIONED LIMIT LAW FOR JUMPS

Theorem 2.1 Let {X k > o) be a stationary sequence of

standard normal random variables with correlation function r = E X Xn o n

not identically one and satisfying

(2.1) sup 1r. - r o for some fixed o< < 1.
tncx] < k <~ n)frsmeaeo c

Then with Mn - max X and C r2r -Inn , we have
o<k<n

(2.2) lim P{c (Mn  M ) >X - Mn > o)= e Ar/_ , x > o

where y equals the atom at zero of the spectral distribution function

associated with r.

Before proceding to the proof of Theorem 2.1 it will be of

interest to have a uniform bound on the tail of the distribution for the

normalized maxima. This is provided to us by the following result of

Mittal, (4].
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Lemma 2.1 (Mittal). For a stationary sequence of standard normal

random variables {X k > o) with correlation function r E X X

satisfying r In n = 0(1),
n

tA2

e P{C (M - b n) < - A) = o(l) as A

uniformly in n for all t in some neighborhood of zero where b = Cn n

ln(47r In n)
2 cn

A check of the proof of this lemma reveals that it may be

stated in the following form which is suitable to our purposes.

Lemma 2.2 Let {X I, k o, ... , n, n = 1, 2,... be a triangular
k,n

array of standard normal random variables. Then setting

(i,j) = E X. X M = max X and 6 (x) = Ir (ij)
n i,n jn ok n kn n n

we have
I

tA"
e p {c (M - b n) < - A) = o(l) as A-+

un:- ..,iy in n for all t in a neighborhood of zero provided

(i) lim 6 (l) < 
n

(2.3)
(ii) 6n Inc) In n = 0(l) for some fixed o < ot < 1.

In order to prove the conditioned limit law resolt we need to determine

the rate at which the probability of the conditioning event goes to zero

and to establish an unconditional limit law result.

Lemma 2.3 Under the conditions of Theorem 2.1 we have

(2.4) lim n P{Mn - Mn- o1 1
n--

Proof. Since (XOP Xs ..., Xn) = (Xn Xn-' X)wehave

o' 1' n n nl'"
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P{M > M )=P{M > max %n n-I l, l<kcn

n an(k)= P {c (Y bn) > c -O Y - b), 1 < k < n
no 0 n noo a 6 k n) - -

c oCk)
=f P{c b )< y , 1< k < n Y

noaco() k n 0 n c

4(b + yL
n C c

n n

*(b) P{Wkn 1- p (o,k) 1/2 v
f W < -n . (b + ) + n (ky)n -00 1 + p (o,k) n

C n

b 2
1 < k < n}e - d--y n y

n

2 -1/2 n (0) V
where O (k,y) = (1 - p (ok)) ( - 1) (hn + - - ) I

n k n cn

*(x) = e - x2 "
2 and wheie the Wk  are standard normal random

variables with correlation function

(2.5) n(ij) = E Wn W n = Pn(ij) - Pn(oi) Pn(oj)
(2S n~')=E . 1 (1 - pn (O,i))l112 (1 - Pn(O,j)) 1 / 2

*(bn

n

Therefore since -- - it suffices to show thatc nn

~~1 - pn(O,k)1/_
(2.6) lim f 1 ( p (O,k) 12 + n < + 0 (ky), I < k < n)

n k I + -n -o-) n cb n  n_

b 2
exp -- y - dy

n 41n nn
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The statement above is verified via dominated convergence

and Lerama 2.4 below. DCnot ing the integrand at (2.6) by f (y) we 1,ave
n.

for any fixed positive number K that fn (y) < e - , _

for all n sufficiently large. To obtain an integrable uniform bound

for the f when - < y < - K we appeal to Lemma 2.2.n

First note that by (2.8) of [3] max a (k) - r
I < k< n

o[i- so that with a chosen such that condition (2.1) holds, we have

for all n large

1 - pn(Ok)
I/ 2

P{Wn ____ (b + y -) + 0 (k,y), 1 < k < n)-- n c n _ - -
S1+ p (o,k) n

n

<P{Wn < b +-- , rna] < k < n)
k n 2c

n

(2.7) < P{ max W n<b a+ 4
a + na] n-[n 4cn-

n]

Next consider the triangular array Vk _ = na
k,n-[no ] k+In ]

o < k < n-[na]. It is easily checked that condition (2.3 i) is satisfied

for the above array and that (2.3 ii) holds for any fixed a' with

a < a < 1. Therefore by (2.7) and Lemma 2.2 we have that for all n

sufficiently large

(2.8) n { eK-/ 2 
, - K

nt 2 -
etyy, - < y < - K

for some positive t and K not depending on n. Therefore assuming (2.9)

we have by dominated convergence applicable by (2.8) that the limit at

(2.6) exists and equals f e -  e-  dy I completing the proof of
-m2

Lenuma 2.3.
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Lenuna 2.4 Let {W ) k = 1, ... , n; n=l, .. be a triangular array of

standard normal random variables with covariance function n(ij) L I nw. n
n

given by (2.5). Then

1 - n(O,k) /

lir PW < (- -- ) (b -) - + (ky) , I < <_
n- p Pn (o,k) n n

(2.9)

-e=e , - < y <

Proof. A simple argument shows that for any fixed c > o, we have for

all n sufficiently large and for o < a 1 chosen so that condition (2.1)

applies that

P.W < b + [n] <k < n) -
P -n c nn

n - o (o,k) 12 V< p{wn < ) (b + f_) + Cn(k,y), 1 < k < n)
1 + p (o,k) n

n

< P{W n < b + [no]< k < n}
k-n Cn

Therefore it suffices to show

(2.10) lir P < bn+ y [no)< k n) ee
n-s n

By Berman's lemma [11 we have



P(Wkn < b + , In'] < k < n - (b +- n c ' -- n C
n n

2
(b n + Y 

) 2

< (CONST.) [ In(i,j)i exp{- .n .

[n]<i<j<n 1 + 1Cn(i,j)l

2V

(bn + -)
(CONST.) . In(i,j) exp{- C } o(l)

1<i<j<n 1+ 1Pn(i,j
n

= o(1)

where the last summation above is o(1) by the iork in [3]. Thus

(2.10) holds since it is true for independent IVk

Proof of Theorem 2.1

P{c n(Mn - M n-1) > x I - M >n-I

1/2

P{ n < n (ok) Y.-X/O ()
--~~k 1+pn(O~k (bn c -- )+®n(k'y-X/on(°o. kn

0+0(1)) n-
nP{M n- Mn 0)o

b 2__.- -Y__
-c 41n n

e dy

bn x 1/2

c o (o) 1-p (ok)

( +0" n (o,k) n C n( ,y),l<k<n
n n

x 2)
b n (Y+ o(0)

-C ~41n n
n

e dy

x

*e as n -+
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3. CONVERGENCE OF POINT PROCESSES

A natural generalization of the result in section 2 is to con-

sider the asymptotic behavior of the sequence of jump sizes conditional on

a jump occurring at time n. A result of this type is conveniently formu-

lated as a convergence result for point processes.

For each n fixed define jump times f n,k k>01 by

Tn,O 0

Tnk inffi>T M . } k I>1!
t n,k-i n+1 n+Tkl

n,k-I

and jump sizes {)n,k; k-O} by

Jn,o = M n-i

Jn,k fl= Mf-+T k >_ 1n+Tn,k n+Tn,k-

Next define point processes nn where for B E B(IR+)

wk
n n(B) = ]B(Cn I )

k=0 0n,

Under the conditions of Theorem 2.1 we show that conditional on a jump

occurring at time n the nn converge in distribution with respect to the

vague topology to homogeneous Poisson random measure with intensity (1- "

Or equivalently conditional on a jump at time n for n sufficiently large

the jumps Jn,k; kz-O are approximately i.i.d. exponential with mean ,1T .

Define point processes M on R x IR byn 4-

00 
kMn(B) = ) IB(n, Cn(X n k- n1))

k=O

Let M be doubly stochastic Poisson random measure with mean measure m given

by
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m([O,tlx(x,,)) = t exp{-[(1- )- x+AI

where A (1+e- x ) exp{-e-X).

Let 5(O'x ) denote the degenerate measure at (O,x) and X-1-e

x > 0 be independent of M.

Lemma 3.1. Under the hypothesis of Theorem 2.1 we have conditional on

(Mn-NIn I > 0).

(3.1) At > M + (0,X)

Proof. To show (3.1) it suffices to show Theorem 4.7 of Kallenberg [2]

that

(i) li:m M (U) Im -M >] < E[,ki(U)+ ( U )
n n -(0,X) 0

(ii) lim P{M n(U)=0 In-N - >0) = P{M(U)+ (OX ) =0)
n-

where U = 5.1 xB. is a disjoint union of bounded rectangles. Since the
1

proof of (3.2) is routine, we will not present the proof which is long

and very detailed.

Let S(B) = k= IB(tk'Xk) be a simple integer valued Radon

measure on RxIR with points {(tk,Xk), k>01. We also call 6 a point svs-

tern. Define a map g on the space of point systems to D[O,-) by

gs(t) = max{xk: tk tt

Then from the space of point systems endowed with the vague topology to

D[O, o) with the Skorohod J1 topology, g is continuous, [7]. Let

Yn(t) = gn(t) = c ( max Xk 41 , t 2 0nO~k< [nt ]nk4- )

and

Y(t) = (l-y) max(X,Z(t)-^) ,t -> 0

r!
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where X and A are independent and independent of the process Z(t),t -W

X-I--e x
, x>O, A-(l+e-X)cxp(-c

-x ) and fZ(t), t_>O is an extremal exp(-e
-x

process, that is for Ot 1<t1< ... <t
n

H4{7(t )! X1 , 2 ( t  ) -< x 2 ..... (t n ) < x n

x 21 2' n

=F tI(min~xI ' .... IX n F t -t1(mintX 2 .... ) X n)) .F tn -n- (x n)

with F(x) = exp(-e- X).

Lemma 3.2. Under the hypothesis of Theorem 2.1 we have conditional on

(NI n-1n-I >0)

(3.3) Yn(-) => Y()

where => denotes convergence in distribution with respect to the SKorohod J

topology on 1)[0,-,,).

Proof. It is easily checked that g(M+6(O,X))(.) d Y(.). Therefore (3.3)

follows from Lemma 3.1 and the continuous mapping theorem.

Conditional on A = A the process Y(t) is a pure jump Markov pro-

cess. Its jumping measure K)(xB), which denotes the probability that the

process after leaving state x enters set B, is calculated as in [b] and is

given by

Q (dy)

K,(x,dy) = -1[y>x1 QX(x)

where Q, (y) = exp{-( Y +

Set Y(t) = k' tk<- t k k+l

where q = 0 and o = (l-Y) X, X-l-e -x , x>O

Let h denote the map which extracts the states from the pure jump

functions in D[0,",). Then hY = n and hY = (F k" k-0

k , ,m- '" "
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Theorem 3.1. Assume the hypothesis of Theorem 2.1. [hen conditional ill

(NI n-N n->0) tn = ' rwhere r is homogeneous Poisson random measure ith

intensity (l-)2

Proof. Since the map h defined above is continuous, it remains only to

identify the limit hY = . k k;0} as homogeneous Poisson random measure
-

with intensity (1-) . But for 0<xox < ... <% we have

x0  dxl . E dx K

i[P{f, dx c dx, k c dx I A=Aj

x0

[1 ex dx i )I

x 0x -
, C )dx 0  .dx k

- k

1 1x dx
k+l c dx .. dx

(1- e)

Hlence the result follow's.
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